hGAAP promotes cell adhesion and migration via the stimulation of store-operated Ca2+ entry and calpain 2

نویسندگان

  • Nuno Saraiva
  • David L. Prole
  • Guia Carrara
  • Benjamin F. Johnson
  • Colin W. Taylor
  • Maddy Parsons
  • Geoffrey L. Smith
چکیده

Golgi antiapoptotic proteins (GAAPs) are highly conserved Golgi membrane proteins that inhibit apoptosis and promote Ca(2+) release from intracellular stores. Given the role of Ca(2+) in controlling cell adhesion and motility, we hypothesized that human GAAP (hGAAP) might influence these events. In this paper, we present evidence that hGAAP increased cell adhesion, spreading, and migration in a manner that depended on the C-terminal domain of hGAAP. We show that hGAAP increased store-operated Ca(2+) entry and thereby the activity of calpain at newly forming protrusions. These hGAAP-dependent effects regulated focal adhesion dynamics and cell migration. Indeed, inhibition or knockdown of calpain 2 abrogated the effects of hGAAP on cell spreading and migration. Our data reveal that hGAAP is a novel regulator of focal adhesion dynamics, cell adhesion, and migration by controlling localized Ca(2+)-dependent activation of calpain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orexin-A Promotes Cell Migration in Cultured Rat Astrocytes via Ca2+-Dependent PKCα and ERK1/2 Signals

Orexin-A is an important neuropeptide involved in the regulation of feeding, arousal, energy consuming, and reward seeking in the body. The effects of orexin-A have widely studied in neurons but not in astrocytes. Here, we report that OX1R and OX2R are expressed in cultured rat astrocytes. Orexin-A stimulated the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), and then in...

متن کامل

TRPC1-STIM1 activation modulates transforming growth factor β-induced epithelial-to-mesenchymal transition

Activation of Epithelial-to-Mesenchymal Transition (EMT) is important for tumor metastasis. Although growth factors such as TGFβ and EGF have been shown to induce EMT in breast epithelial cells, the mechanism resulting in migration is not well understood. Herein, we provide evidence that Ca2+ entry into the cell, especially upon store-depletion, plays an important role in TGFβ-induced EMT by pr...

متن کامل

Lysophosphatidic Acid Promotes Cell Migration through STIM1- and Orai1-Mediated Ca2+i Mobilization and NFAT2 Activation

Lysophosphatidic acid (LPA) enhances cell migration and promotes wound healing in vivo, but the intracellular signaling pathways regulating these processes remain incompletely understood. Here we investigated the involvement of agonist-induced Ca(2+) entry and STIM1 and Orai1 proteins in regulating nuclear factor of activated T cell (NFAT) signaling and LPA-induced keratinocyte cell motility. A...

متن کامل

Calmidazolium and arachidonate activate a calcium entry pathway that is distinct from store-operated calcium influx in HeLa cells.

Agonists that deplete intracellular Ca2+ stores also activate Ca2+ entry, although the mechanism by which store release and Ca2+ influx are linked is unclear. A potential mechanism involves 'store-operated channels' that respond to depletion of the intracellular Ca2+ pool. Although SOCE (store-operated Ca2+ entry) has been considered to be the principal route for Ca2+ entry during hormonal stim...

متن کامل

TRPC1 regulates skeletal myoblast migration and differentiation.

Myoblast migration is a key step in myogenesis and regeneration. It allows myoblast alignment and their fusion into myotubes. The process has been shown to involve m-calpain or mu-calpain, two Ca(2+)-dependent cysteine proteases. Here we measure calpain activity in cultured cells and show a peak of activity at the beginning of the differentiation process. We also observed a concomitant and tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 202  شماره 

صفحات  -

تاریخ انتشار 2013